
A Practical Transaction Model and Untrusted Transaction
Manager for a Multilevel-Secure Database System

Myong H. Kanga, Oliver Costichb†, and Judith N. Froschera

a Center for Secure Information Technology, Naval Research Laboratory, Washington, D.C.
20375

b Center for Secure Information Systems, George Mason University, Fairfax, Virginia
22030

Abstract

A new transaction model for multilevel-secure databases which use the replicated
architecture is presented. A basic concurrency control algorithm and two variations are
given based on this transaction model. We also present new correctness criteria for
multilevel-secure databases which use the replicated architecture. Based on this criteria, we
prove that our algorithms are correct.

Keyword Codes: H.2.1; K.6.5
Keywords: Database Management, Logical Design; Security and Protection

1. INTRODUCTION

There are several approaches for multilevel database systems which protect classified
information from unauthorized users based on the classification of the data and the clear-
ances of the users. One, the integrity lock approach [5], attempts to combine encryption
techniques with off-the-shelf database management systems. The trusted frontend applies an
encrypted check sum to data in untrusted backend databases. Another, the kernelized
approach [11], relies on decomposing the multilevel database into single level databases
which are stored separately, under the control of a security kernel enforcing a mandatory
access control policy.

hhhhhhhhhhhhhhh
† Supported by the Naval Research Laboratory under contract N0001489-C-2389.



The integrity lock approach is computationally intensive and has a potential covert
channel. The kernelized approach can yield reduced performance due to the need for recom-
bining single level data to produce multilevel data. Motivated by performance concerns, a
replicated architecture approach has been proposed.

The replicated architecture approach [6] uses a physically distinct backend database
management system for each security level. Each backend database contains information at
a given security level and all data from lower security levels. The system security is assured
by a trusted frontend which permits a user to access only the backend database system
which matches his/her security level.

The SINTRA1 database system, which is currently being prototyped at the Naval
Research Laboratory, is a multilevel trusted database management system based on this
replicated architecture. The replicated architecture system contains a separate database sys-
tem for each security level. The database at each security level contains data at its own secu-
rity level, and replicated data from lower security levels.

The SINTRA database system consists of one trusted front end (TFE) and several
untrusted backend database systems (UBD). The role of the TFE includes user authentica-
tion, directing user queries to the backend, maintaining data consistency among backends,
etc. Each UBD can be any commercial off-the-shelf database system. Figure 1 illustrates
the SINTRA architecture.

In the SINTRA project, we make the following assumptions:

(1) All UBD use the same database query language (e.g., SQL).

(2) The TFE changes the database states of the UBD only through database queries.

(3) Each UBD performs some type of scheduling which produces a serializable and recov-
erable history.

1.1. Merits and Problems for the Replicated Architecture

At first glance, a database mangement system for each security level may seem exces-
sive. However, we think this approach has the following merits:

g The security policy can be easily enforced by carefully designing interfaces among dif-
ferent database systems.

g Development cost can be reduced because commercial database systems for backend
computers are widely available.

g The amount of trusted software can be minimized.

g Performance can be improved by using optimization and parallelization techniques
which have been developed for conventional databases. This is the case because the
replicated architecture uses conventional database systems as backend database sys-
tems, and uniprocessor or multiprocessor computers can be chosen as backend comput-
ers without affecting the security policy.

Despite the above advantages, the replicated architecture has a unique problem. Since each
UBD in a replicated architecture contains data from lower levels, update transactions have
hhhhhhhhhhhhhhh
1. Secure INformation Through Replicated Architecture



hhhhhhhhhhh

cc
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhcc

c
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhh

cc
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhcc

c
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhh

cc
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhcc

c
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhh

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

hhhhhhhhhhhhhhhhhh
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhh

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

Ac

As

Ats

Rs

Qc

Qts

Rts

Rc

Qs

Frontend
Trusted

Scheduler
Global

Top Secret
Secret

Confidential

Secret
Confidential

Confidential

Users

Confidential Backend

Secret Backend

Top Secret Backend
Global Off-the-shelf

DatabaseScheduler

Global Off-the-shelf
DatabaseScheduler

Scheduler Database
Off-the-shelfGlobal

Figure 1: The SINTRA Architecture.

to be propagated up to higher security level databases. There are some problems which are
related to this propagation.

[a] Since lower level update transactions propagate to higher level databases, high-level
databases can be overloaded with lower level update transactions. This creates prob-
lems such as slow response to the request of a high-level user and longer propagation
time for lower level update transactions.

[b] The propagation of update transactions has to be carefully controlled. If the propaga-
tion of update transactions is not carefully controlled, inconsistent database states
among backend databases can be created. Consider this example. Two confidential
level update transactions Ti and Tj are serialized in the order of <Ti, Tj> at the
confidential level backend database system. Since these two transactions are update
transactions, these transactions have to be propagated to the secret level. If these two
transactions are serialized in the order of <Tj, Ti> at the secret level, an inconsistent
database state between confidential and secret level backend databases may be created.
Therefore, the serialization order introduced by the local scheduler at the user’s session



level must be maintained at the higher level UBDs.

A possible solution to problem [a] is presented in [10]. In this paper we concentrate on solu-
tions to problem [b].

1.2. Motivation for Another Concurrency Algorithm

Several concurrency control mechanisms which preserve database consistency and
security for the replicated architecture have been proposed [4, 8, 12]. Those concurrency
control algorithms assume that each UBD uses conservative scheduling or something simi-
lar to preserve the scheduled order of conflicting updates (i.e., never abort update transac-
tions from lower security classes). In reality, off-the-shelf database systems do not gen-
erally guarantee this condition. Also such scheduling may either pass the burden to the user
by asking him to predeclare read and write sets or remove the interactive query capability of
database system. Hence, this assumption poses performance and usability problems for the
SINTRA project.

Also the proposed algorithms use the conventional basic operations, read and write, to
describe transactions. Traditionally, r[x] and w[y] are used to denote ‘‘read data item x’’
and ‘‘write data item y,’’ respectively. Data items x and y may be relations, fixed-sized
pages, or tuples depending on the granularity of concurrency controllers. In this paper, we
propose a new transaction model which is better suited for the SINTRA architecture.

The scheduler for the SINTRA architecture has two kinds of components; global and
local. The global scheduler enforces data consistency among the UBDs. On the other hand,
the local scheduler enforces serializability among transactions which are submitted to the
backend database system. In theory, where the global scheduler executes is not important in
this architecture. However, since we expect that I/O will be a bottle-neck for this type of
architecture, we distribute much of the single level part of the global scheduler to the back-
end computers, depicted in figure 1. The local schedulers are the concurrency controllers of
the off-the-shelf database systems.

The local schedulers typically use locks or timestamps based on the knowledge of
actual data or physical layout of the data in each UBD. However, the global scheduler has
very little knowledge about the behavior of the local scheduler or the physical layout of
data. For example, the global concurrency controller has no knowledge about where a
specific tuple is located or which physical page should be locked. Sometimes the tuples
which will be modified are unknown until the computation based on existing data is com-
pleted. The above factors may force the global concurrency controller to use relations as
basic units to detect conflicts among transactions. Such a scheduler will be too restrictive
and inefficient because it ignores the fact that referencing only a few tuples or few attributes
of a relation is not the same as referencing the entire relation.

Based on the observations above, we argue that the traditional transaction model is not
sufficient to model transactions for this replicated architecture. In this paper, we introduce a



layered view of transactions. In our model, a transaction can be viewed as a sequence of
database queries, and each query can be viewed as a sequence of read and write operations.
Based on this model, we introduce a concurrency control algorithm which makes no
assumption that each UBD uses any particular scheduling technique.

This paper is organized as follows. Section 2 discusses a transaction model for the
SINTRA architecture. A concurrency control mechanism based on this transaction model is
presented in section 3. Finally, section 4 summarizes the contributions of this paper.

2. THE MODEL

In this section, models are presented for security, replicated architecture, and transac-
tion processing. The transaction model, which is presented in this section, can alleviate the
difficulties described above in section 1.2.

2.1. Security Model

The security model used here is based on that of Bell and LaPadula [1]. The database
system consists of a finite set D of objects (data item) and a set T of subjects (transactions).
There is a lattice S of security classes with ordering relation <. A class Si dominates a class
Sj if Si ≥ Sj. There is a labeling function L which maps objects and subjects to a security
class:

L: D ∪ T → S

Security class u covers v in a lattice if u > v and there is no security class w for which u > w
> v.

We consider two mandatory access control requirements:

(Simple Security Property)
If transaction Ti reads data item x then L(Ti) ≥ L(x).

(Restricted *-Property)
If transaction Tj writes data item x then L(Tj) = L(x).

The simple security property allows a transaction to read data items if the security level of a
transaction dominates the security level of data items. The restricted *-property allows a
transaction to write if the security level of a transaction is the same as that of data items
(i.e., no write-ups or write-downs are permitted). In [8], it is argued that write-ups (i.e., Ti
cannot write to data item x if L(Ti) < L(x)) are undesirable in database systems for integrity
reasons.



2.2. Replicated Architecture Model

The system has a TFE, which mediates the access of subjects to objects. The TFE con-
tains the trusted computing base (TCB), but not all of the TFE need to be trusted. The sys-
tem also contains a set of single level untrusted backend databases C, one for each element
of the security lattice. Each backend database Cu contains copies of all data items in all
databases whose security level is dominated by security level u. Alternatively, if L(x) = u
such that x ∈ Cu, then there is a copy of x in each database whose security level dominates
u.

2.3. Transaction Model

We adopt a layered model of transactions, where a transaction is a sequence of queries,
and each query can be considered as a sequence of reads and writes. For example,
replace and delete queries can be viewed as a read operation followed by a write
operation, insert can be viewed as a write operation, and retrieve can be viewed as
a read operation. A layered view of two transactions T1 and T2 is shown in figure 2.

w23[x]r23[x]w22[y]r21[z]w13[y]r13[y]w12[u]w11[z]r11[z]

T2T1

q23q22q21q13q12q11

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

l(0)

l(1)

l(2)

Figure 2: Layered model of two transactions.

Definition 1.

A transaction Ti is a sequence of queries terminated by either a commit(ci) or an
abort(ai), i.e., Ti = <qi1, qi2, ..., qin, ci>. Each query, qij, is an atomic operation and is
one of retrieve, insert, replace, or delete.

To model the propagation of updates produced by a given transaction to higher security
level databases, update projection is defined.



Definition 2.

An update projection Ui, which corresponds to a transaction Ti, is a sequence of
update queries, e.g., Ui = <qi2, qi5, ..., qin, ci> obtained from transaction Ti by simply
removing all retrieve queries.

Note that no aborted transaction will be propagated. Hence, update projections are always
terminated by a commit. Also note that our update projections consist of read and write
operations.

To describe concurrency control mechanisms, we adopt the following definition of
conflict.

Definition 3.

Two operations at the same layer conflict if they operate on the same data item and one
of them is either write, insert, delete, or, replace.

It is interesting to compare our transaction model to another multilevel transaction
model which appears in [13]. In their model, the low-level conflicts impose constraints on
the serialization orders for higher levels. However, in the SINTRA architecture, the global
scheduler does not have enough information about the conflicts which may occur at the
local scheduler. Therefore, the global scheduler has to make serialization decisions indepen-
dent of the those of the local scheduler.

In the following section, we present a concurrency control algorithm using the transac-
tion model above. In our concurrency control algorithm, the global scheduler works at the
query level (i.e., l(1) in figure 2).

3. A CONCURRENCY CONTROL MECHANISM

In this section, a concurrency control algorithm is presented, which makes no assump-
tion about UBD scheduling. In this algorithm, two types of schedulers can be identified,
global and local schedulers. The global scheduler enforces data consistency among different
security levels. On the other hand, the local scheduler enforces serializability among tran-
sactions, including update projections, which are submitted to the backend database system.
The local scheduler deals with layer l(0) in figure 2, and the global scheduler deals with
layer l(1) and upper layers. The global scheduler detects conflicts at level l(1). Therefore,
no knowledge of the specific items to be accessed or even the granularity of the lower level
concurrency controller is required.



3.1. Algorithm C

To describe the concurrency control protocol, we need to define several mechanisms:

g A queue Qu is associated with each backend database Cu, where u is a security level.
The purpose of Qu is to maintain a list of update projections which have been executed
and committed at Cu. The queue is ordered by the serialization order of the execution
of these transactions at Cu.

g In addition, there is an untrusted mechanism Ru which maintains Qu and can read the
contents of Qv for all v which are dominated by u in the security lattice.

g Another queue Au is associated with each backend database Cu. The purpose of Au is
to maintain a list of update projections which come from Qv, where v is covered by u,
and are waiting to be sent to Cu. The order of update projections in Au is determined
by the concurrency control algorithm which will be described later.

In our algorithm, Qu, Au, and Ru are considered parts of a global scheduler. Since mechan-
ism Ru has to read the contents of Qv for all v which are dominated by u, the Ru and the Qu
may be located in the TFE. However, Au may be located in the backend system (see figure
1). Also in our algorithm, we say a backend database Cu covers Cv if u covers v in the
security lattice. The protocol processes transactions as follows:

Algorithm C:
At each backend database Cu:

[1] Primary transactions (that are submitted directly by the user) and update projec-
tions are received from the global scheduler and submitted to the local backend
scheduler.

[2] As local transactions (primary transactions and update projections) are commit-
ted, a report of their serialization is sent to the global scheduler. These reports are
sent in an order consistent with the serialization order determined by the local
scheduler.

At the global scheduler:

[1] For each primary transaction Ti submitted to the TFE, Ti is dispatched to Cu for
processing where L(Ti) = u.

[2] Whenever a serialization report for Ti or Uj is received from Cu, it is added to the
end of Qu.

[3] The Ru scans the queue Qv for those v for which Cu covers Cv. The Ru will
retrieve an update projection Ui from Qv and add it to the end of Au when the fol-
lowing condition is satisfied for all v ∈ S:

g If Cu covers Cv, and Uj can eventually appear in Qv, then it does appear in
the beginning of Qv.

[4] For update projections in the queue Au, update projections are sent to Cu one
after another. Specifically, if Ui is before Uj in the queue Au, then send Ui and
wait until Ui is committed at Cu, and then send Uj.



[5] An update projection is removed from Au once it is committed.

[6] If an update projection, Ui, is aborted then resubmit Ui to Cu.

In algorithm C, we assume that local schedulers produce schedules such that the serializa-
tion order and the commit order of transactions are the same2 (i.e., for any pair of transac-
tions Ti and Tj, if Ti is committed before Tj then Ti also precedes Tj in the serialization
order). However, most database schedulers do not guarantee the above condition. The
take-a-ticket [7] operation can be used to force any recoverable scheduler [2] to produce
schedules such that the serialization order and the commit order of transactions are the
same. The take-a-ticket operation consists of reading the value of a ticket prior to commit
time, and incrementing it through regular data manipulation operations. The value of a
ticket determines the serialization order. All operations on tickets are subject to the local
concurrency control.

Note that algorithm C does not slow down user (primary) transactions. The global
scheduler of algorithm C concerns the serialization order of the update projections in Au at
each security level. Concurrency control among primary transactions and update projections
is the responsibility of the local scheduler in the UBD.

Also note that Qu and Ru are not needed if the security classes form a completely
ordered set, since Au satisfies all the requirement of the algorithm.

3.2. Proof of Correctness

Many concurrency control algorithms have been proposed for the replicated architec-
ture [4, 8, 12]. These papers use one-copy-serializability (or 1SR) [2] as the correctness cri-
teria for their concurrency control algorithms. In this paper, we present an alternative
correctness criteria which we consider more intuitive. Based on this criteria, we will prove
that algorithm C is correct. We will then show that our criteria imply one-copy-
serializability.

For the sake of mathematical convenience, in this section, we assume read-only tran-
sactions have empty update projections which serve solely to mark their position in the seri-
alization ordering of all transactions. Also, in this section, we do not distinguish the queue
Qu at the security class u and the contents of update projections in the queue Qu.

An example will help to clarify our approach. Consider the security lattice in figure 3,
and two non-conflicting L-level transactions Ti and Tj. Also consider an M1-level transac-
tion Tu, and an M2-level transaction Tv. Let’s further assume that Tu conflicts with Ti and
Tj, and Tv conflicts with Ti and Tj. Since two transactions, Ti and Tj, are not conflicting and
hhhhhhhhhhhhhhh
2. Consider the history of two transactions, Ti and Tj, H, where H = ri[x] wi[x] rj[x] wj[x] wi[y]

ci cj. This history does not satisfy the rigorousness condition [3]. However, this history will
be satisfactory for our purpose because the serialization order and the commit order of tran-
sactions are the same.



our security model does not allow write-down, an execution order <Ti, Tu, Tj> at security
class M1 and an execution order <Tj, Tv, Ti> at security class M2 will generate the same
result on replicas of security class L data. However, the reversed order between Ti and Tj at
security classes M1 and M2 will create confusion in applying our update projection propa-
gation rule. Specifically, at security class H, a consistent ordering among Ti, Tj, Tu, and Tv
cannot be determined then 1SR will be violated. Consequently, any global scheduler which
does not enforce the same ordering among transactions at each relevant UBD may fail to
produce consistent schedules. Thus any algorithm which gives 1SR schedules must preserve
the orderings at lower levels.

L
<Ti, Tj>

M2 <Tj, Tv, Ti>M1<Ti, Tu, Tj>

H

H > M1 > L
H > M2 > L

Figure 3: A security lattice

In this paper, we use another criteria which says ‘‘preserve the order between update
projections which is determined at lower security class (or preserve the relative order).’’ We
also show that any schedule for this architecture which preserves the relative order of update
projections satisfies 1SR.

Let U = { Ui | Ti ∈ T} be the set of all update projections and U* be the set of all
strings from U. Then for each pair of security classes u and v of S, for which u ≥ v, there is
a projection πuv : U* → U* which is defined as follows:

(a) πuv (Ui) = Ui if L(Ti) ≤ v.

(b) πuv (Ui) = λ, the null string, otherwise.

Definition 4.

If u and v are in S, with u ≥ v, and πuv (Qu) = Qv then we say that the relative order
between Qu and Qv is preserved.

For example, if Qu = <Ui, Uk, Uj> and Qv = <Ui, Uj>, and Uk is originated from security
class w, where u ≥ w > v, then the relative order of update projections in Qu and Qv is
preserved because πuv (Qu) = Qv = <Ui, Uj>. We can now state our concept of correctness



for transaction processing more precisely.

Definition 5.

For replicated architecture trusted database systems as above, let Qu be the serializa-
tion order of the transactions and update projections committed at Cu. Then a con-
currency control algorithm is correct if it preserves relative orders for all elements of
the security lattice.

Theorem 1

Algorithm C is correct.

Proof.

This is evident from the algorithm, since at each class, the update projections are executed
and committed in the same relative order established at lower security class. `

Briefly, a schedule of transaction execution on a replicated database system is one-
copy-serializable if it is view equivalent to a serial schedule on a one-copy database sys-
tems. View equivalence requires the two schedules to have the same reads-from and final-
writes relationships. Details for this architecture may be found in [4]. Such schedules will
be referred to as ML-1SR. Although in the following proofs, we use only read and write
operations, we could instead use retrieve, insert, replace, and delete as in
our query languages. We denote read and write operations on a data item x, or a copy of it
xn, of transaction Ti, by ri[x] and wi[x].

Theorem 2

With the architecture as specified above, if each UBD has a local scheduler which pro-
duces serializable schedules and there is a global scheduler such that for all u and v
with u ≥ v, the relative order between Qu and Qv is preserved, then the global schedule
is ML-1SR.

Proof.

Let Sm, where m is the maximal element of the security lattice, determine a serial execution
order on the one-copy logical database corresponding to the replicated system, and let H be
the schedule produced by an algorithm satisfying the hypotheses of the theorem. We assert
that H is view equivalent to Sm. Clearly, H and Sm have the same final-writes, by definition
of Sm. We will show that H and Sm have the same reads-from relationships using proof by
contradiction.

(1) Suppose Tj reads-x-from Ti in Sm, but not in H. Let L(Tj) = n. Then in Cu, wi[x] pre-
cedes wk[x] and wk[x] precedes rj[x]. But then at Qu, the serialization order is Ti pre-
cedes Tk and Tk precedes Tj. This is preserved in Sm, by hypothesis, contradicting that
Tj reads-x-from Ti in Sm.



(2) Suppose Tj reads-x-from Ti in H, but not in Sm. Then if L(Tj) = n, Tj reads-x-from Ti
in Cu. But if there is a Tk for which wi[x] precedes wk[x] and wk[x] precedes rj[x] in
Sm, then because L(Tk) = L(Ti) = L(x) ≤ n, this relationship also holds in Cu and thus
in H. This contradicts our assumption that Tj reads-x-from Ti in H. `

It is worthwhile to note that if the system has a completely ordered security lattice, the rela-
tive order between non-conflicting update projections does not have to be preserved. It is
sufficient to preserve the ordering of conflicting update projections, rather than all update
projections. This may permit greater concurrency.

Corollary 1

Algorithm C produces ML-1SR schedules.

Proof.

This follows immediately from the preceding theorems. `

3.3. Two Variations

Step [4] of algorithm C forces update projections to execute serially. However, if the
global scheduler of the SINTRA system can detect conflicts among transactions, we can
achieve better concurrency among update projections by taking advantage of this
knowledge. Since the backend database system usually cannot report whether there were
conflicts, an accurate analysis technique which can detect conflicts among transactions is
needed. Data dependence analysis, introduced in [9], can detect conflicts among transac-
tions without any knowledge of actual data or physical layout of data. Rather, it relies on
analysis of the queries themselves, detecting conflicts by determining if common data is to
be accessed.

The rest of the section introduces two variations of the algorithm C, optimistic and
semi-optimistic approaches, which may achieve better concurrency. These variations are
concerned with how update projections in Au are submitted to the UBD, and therefore how
committed user transactions and update projections are placed in Qu. In our two variations,
transactions are executed hoping that the ‘‘correct’’ schedule is produced. When it is not,
some amount of work already done will have to be undone. Hence, processing that is com-
pleted will have to be certified before it can be committed.

For the rest of the section, we assume that the serialization order is known at the end of
each transaction (just before it might be committed). No transaction may actually be com-
mitted unless the global scheduler certifies it. If a user transaction or an update projection is
committed, then it will be dispatched to Qu. However, if a user transaction or an update pro-
jection is executed but not yet committed, the global scheduler will store it in a queue Pu.
Pu holds candidates for insertion into Qu. Once the global scheduler certifies and commits a
transaction then it will be moved from Pu to Qu.



3.3.1. Optimistic Approach

Generally, the optimistic variation of the algorithm C works as follows. User transac-
tions and update projections at any security level are submitted to the backend as they
arrive. If an update projection is completed out of the submission order, it is held in Pu
awaiting certification, along with the completed user transactions submitted at that level.
When an update projection which is submitted earlier completes and is placed in Pu, data
dependence analysis is used to determine whether the serialization order determined by Pu
is equivalent (in a technical sense) to a correct (update order-preserving) one. If it is, Pu is
rearranged to get a maximal prefix which is correct. The transactions in the prefix are
certified and committed. If Pu cannot be rearranged, all transactions in Pu must be rolled
back and re-submitted.

More specifically, the optimistic approach works as follows:

[a] Submit update projections in Au to UBD as they arrive.

[b] Commit user transactions and update projections as long as update projections are seri-
alized in the order that they are submitted to UBD up to that time (i.e., Pu is empty).
Once those are committed then dispatch them to Qu.

[c] If Ui should be next to be serialized but Uj is already serialized then put Uj in Pu
without committing it. Any user transactions or update projections which are executed
will be put in Pu without committing them until Ui is executed. After Ui is executed,
put Ui into Pu.

[d] While the first and last transactions in Pu are update projections, do the following
steps:

(1) Find an update projection in Pu which should be serialized before any other
uncommitted update projections. Call that update projection Tn.

(2) Test if the first transaction in Pu, T1 (which must be an update projection),
conflicts with Tn. If T1 and Tn conflict then abort and remove all transactions in
Pu, re-submit them, and return to [a].

(3) Test if T1 conflicts with any of the transactions from T2 through Tn-1. If there is
no conflict, then move T1 to immediately after Tn in Pu and go to step (5).

(4) Test if Tn conflicts with any of the transactions from T2 through Tn-1. If there is a
conflict, then abort and remove all transactions in Pu, re-submit them, and return
to [a]. Otherwise move Tn to the beginning of Pu.

(5) While the first transaction in Pu, T1, is either a user transaction or an update pro-
jection which is in the proper order to be serialized then do the following steps:

g Commit T1, remove it from Pu and Au if applicable, and dispatch it to Qu.

An example of this may be helpful. Consider a situation where the global scheduler submits
update projections in the order of <Ui, Uj> and the serialization order at the UBD is <Uj, Tk,
Ui> where Tk is a user transaction. Since Uj is serialized before Ui, Uj cannot be committed
until Ui is committed. Now the task is to find if the order of either Ui or Uj can be rear-
ranged. The only way this can happen is:



g There is no conflict between Ui and Uj, and either

(a) There is no conflict between Uj and Tk, or

(b) There is no conflict between Tk and Ui.

If situation (a) happens then <Tk, Ui, Uj> will be the order which will be sent to Qu by the
algorithm. If situation (b) happens then <Ui, Uj, Tk> will be the order which will be sent to
Qu. This more complex approach may be justified if conflicts are likely to occur more fre-
quently.

We could improve the performance of this algorithm by minimizing the number of
transactions which must be aborted. For example, assume that T1 and Tn do not conflict but
T1 conflicts with Tk and Tn conflicts with Tk+1. We could just abort Tk+1 through Tn to
ensure that Tn is serialized before Tk+1.

3.3.2. Semi-optimistic Approach

Since the SINTRA security policy prohibits write-up or write-down, the probability of
conflict between a user transaction at security class u and an update projection from the
security class v where u > v may be quite small3. Hence if conflicts among update projec-
tions are detected before those are submitted then there is less probability of aborting.

The semi-optimistic variations is similar to the optimistic one, but rather than submit-
ting update projections as they arrive, it checks for conflicts first, thereby reducing the likeli-
hood of having to roll back work already done. Specifically, the semi-optimistic approach
replace the step [a] of the preceding optimistic approach with following:

[a1] Detect conflicts among update projections in Au.

[a2] If two update projections Ui and Uj conflict then submit them serially (i.e., submit one
and then wait for a commit message before submitting another).

[a3] If there are update projections in Au which do not conflict then submit one after
another (i.e., submit one and then submit next update projection without waiting for
commit message of previous update projection).

After applying steps [b] and [c] of the optimistic approach, Pu can be tested, as before (i.e.,
step [d] of optimistic approach). The only difference is that there is no need to detect
conflicts among update projections because those have been already tested. Therefore, only
steps (1), (3), (4), and (5) from the optimistic approach are required. This technique clearly
falls between those of the previous two algorithms. The following table clarifies the dif-
ferent approaches of the three variations.

hhhhhhhhhhhhhhh
3. The SINTRA security policy allows read-down. Hence, a user transaction at level u can

conflict with an update projection from level v where u > v.



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Submission Process for Mechanism for Insuring Consistent

Algorithm Variant
Update Projections Update Projection Orderingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Pessimistic One at a time None required
(Algorithm C)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Semi-optimistic Check for conflicts be-
fore submitting. Main-
tain submission order
for conflicting update
projections.

Check for conflicts between update
projections and primary transac-
tions after execution. Roll back
and redo as necessary.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Optimistic As they arrive (No

checking or delaying)
Check for conflicts among all local
transactions after execution. Roll
back and redo as necessary.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

3.3.3. Correctness of the Variations

Corollary 2

The Optimistic and semi-optimistic variations of algorithm C produce ML-1SR
schedules.

Proof.

This is evident from the algorithm, since the global scheduler certifies a schedule only if the
relative order between Qu and Qv is preserved for all u and v with u ≥ v. `

4. CONCLUSIONS

In this paper, we have presented arguments that the traditional transaction model is not
sufficient to model transactions for multilevel-secure databases which use the replicated
architecture. We have proposed a new transaction model for multilevel-secure databases.

Even though several concurrency control algorithms for the replicated architecture
have been proposed, those algorithms assume that each UBD uses conservative scheduling
or at least assumes schedules preserve the order of update projections without indicating
how it is done. We present a concurrency control algorithm which does not assume that
each UBD uses conservative scheduling. Our concurrency control algorithm is based on the
transaction processing model which is proposed in this paper, which controls ordering
through other means, outside the UBD.

Our basic concurrency algorithm, algorithm C, executes update projections serially.
We also offer two variations of algorithm C, optimistic and semi-optimistic approaches,



which may achieve better concurrency under a variety of likely conditions. Our directions
for future research are performance comparison among different variations under different
application scenario. These algorithms are, in fact, being implemented in our prototype for
the SINTRA project.

REFERENCES

1 Bell, D. E., and LaPadula, L. J. Secure computer systems: Unified exposition and mul-
tics interpretation. The Mitre Corp, (1976).

2 Bernstein, P. A., et el. Concurrency controller and recovery in database systems.
Addison-Wesley (1987).

3 Breitbart, Y., et el. On rigorous transaction scheduling. IEEE Transaction on Software
Engineering, 17, 6 (1991).

4 Costich, O. Transaction processing using an untrusted scheduler in a multilevel data-
base with replicated architecture. in Database Security V: Status and Prospects
(North-Holland 1992)

5 Denning, D. Commutative filters for reducing inference threats in multilevel database
systems. Proceedings of the IEEE symposium on Security and Privacy (1985).

6 Froscher, J. N., and Meadows, C. Achieving a trusted database management systems
using parallelism. in Database Security II: Status and Prospects (North-Holland 1989)

7 Georgakopoulos, D., et el. On serializability of multidatabase transactions through
forced local conflicts. Proceedings of Conference on Data Engineering (1991).

8 Jajodia, S., and Kogan, B. Transaction processing in multilevel-secure databases using
replicated architecture. Proceedings of the IEEE symposium on Security and Privacy
(1990).

9 Kang, M. H., et el. Data dependence analysis for an untrusted transaction manager in a
multilevel database system. First International Conference on Information and
Knowledge management (1992).

10 Kang, M. H., and Froscher, J. N. Architectural impact on performance for a multilevel
database system. Submitted for publication.

11 Lunt, T., et el. The seaview security model. IEEE Transaction on Software Engineer-
ing, 16, 6 (1990).

12 McDermott, J., et el. A single level scheduler for the replicated architecture for
multilevel-secure databases. Proceedings of the seventh annual computer security
applications conference (1991).

13 Weikum, G. Principles and realization strategies of multilevel transaction manage-
ment. ACM Transactions on Database Systems, 16, 1 (1991)


